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We present a model combining a periodic array of rectangular potential wellsfthe Kronig-PenneysKPd
potentialg and the cubic-quinticsCQd nonlinearity. A plethora of soliton states is found in the system: funda-
mental single-humped solitons, symmetric and antisymmetric double-humped ones, three-peak solitons with
and without the phase shiftp between the peaks, etc. If the potential profile is shallow, the solitons belong to
the semi-infinite gap beneath the band structure of the linear KP model, while finite gaps between the Bloch
bands remain empty. However, in contrast with the situation known in the model combining a periodic
potential and the self-focusing Kerr nonlinearity, the solitons fill only a finite zone near the top of the semi-
infinite gap, which is a consequence of the saturable character of the CQ nonlinearity. If the potential structure
is much deeper, then fundamental and doublesboth symmetric and antisymmetricd solitons with a flat-top
shape are found in the finite gaps. Computation of stability eigenvalues for small perturbations and direct
simulations show that all the solitons are stable. In the shallow KP potential, the soliton characteristics, in the
form of the integral powerQ sor width wd versus the propagation constantk, reveal strong bistability, with two
and, sometimes, four different solutions found for a givenk sthe bistability disappears with the increase of the
depth of the potentiald. Disobeying the Vakhitov-Kolokolov criterion, the solution branches withboth
dQ/dk.0 anddQ/dk,0 arestable. The curveQskd corresponding to each particular type of the solution
swith a given number of local peaks and definite symmetryd ends at a finite maximum value ofQ sbreathers are
found past the end pointsd. The increase of the integral power gives rise to additional peaks in the soliton’s
shape, each corresponding to a subpulse trapped in a local channel of the KP structuresa beam-splitting
propertyd. It is plausible that these features are shared by other models combining saturable nonlinearity and a
periodic substrate.
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I. INTRODUCTION

Spatial solitons in multichannel optical systems are a sub-
ject of interest for fundamental studies and offer potential
applications to photonics. The prototypical model of this
type is based on the one-dimensionals1Dd nonlinear
SchrödingersNLSd equation, which governs the evolution of
the local amplitudeCsz,xd of the electromagnetic wave
along the axisz in a planar nonlinear optical waveguide with
the local refractive index periodically modulated along the
transverse coordinatex. In normalized unitsssee, e.g., Ref.
f1gd, this equation is

i
] C

] z
+

]2C

] x2 + n0sxdC + dnsuCu2dC = 0, s1d

wheren0sxd is proportional to a local change of the linear
refractive index anddnsuCu2d is the nonlinear correction to it;
dnsuCu2d=n2uCu2, with n2.0, in the case of the ordinary
Kerr nonlinearity. Solitons in Eq.s1d with the Kerr nonlinear
term and sinusoidal transverse modulation with a period
L ,n0sxd=e sins2px/Ld, were studied in Ref.f1g. In that work

it was shown, in a numerical form and by means of a varia-
tional approximation, that the model supports a family of
single-humpedsSHd solitons, pinned at a center of a local
potential well swaveguiding channeld. The integral power
snormd of the SH soliton

Q ; E
−`

+`

uCsxdu2dx, s2d

which is a dynamical invariant of Eq.s1d, may take any
value, 0,Q,`, the entire family being stable. Symmetric
double-humpedsSDHd solitons, which may be regarded as
bound states of two in-phase SH solitons, were also found in
Ref. f1g, with a conclusion that, for a fixed distanceL be-
tween adjacent waveguiding cores, the symmetric solitons
with two distinct peaks exist up to a certain minimum value
of the propagation constantk sits definition is given belowd,
and an attempt to create an SDH soliton with a smaller value
of k leads to a merger of the double-humped structure into a
single-humped one. Besides that, it was demonstrated that a
“hot spot” si.e., a strong localized attraction centerd modeled
by an extra term,dsx−x0ddsz−z0dC in Eq. s1d, with x0 fixed
at the midpoint between two adjacent guiding channels, is
able to pull the SH soliton from one channel to the other,
which may be used for applications to all-optical switching.

Later, exactly the same model, based on Eq.s1d with the
Kerr nonlinearity andn0sxd=e sins2px/Ld , z being replaced
by time t, attracted attention as a model of a strongly elon-
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gatedseffectively 1Dd Bose-Einstein condensatesBECd with
attractive interactions between atoms, loaded in an optical-
lattice sOLd potential f2g. In particular, if the OL is strong
enough, the periodic potential splits the BEC into an array of
weakly coupled droplets, which suggests the use of a quasi-
discrete approximation for the investigation of the corre-
sponding solitonsf3g sthis approximation has become a topic
of intensive studies in the context of BECsf4gd.

It is relevant to mention that a multidimensional generali-
zation of Eq.s1d, with ]2/]x2 replaced by the two- or three-
dimensional Laplacian, and the periodic potential made mul-
tidimensional, is also a relevant model for the description of
the BEC in OLs, this multidimensional model, too, support-
ing stable solitonsf5g. The 2D version of the model applies
to nonlinear photonic crystals as wellsalthough in the latter
case, the nonlinearity coefficient may also be subject to the
transverse modulationd, where stable spatial solitons have re-
cently been predictedf6g. Actually, transverse modulation of
the refractive index in optics can be created not only through
a small periodic variation of the optical density, but also—in
photorefractive media—in avirtual form, by means of a sys-
tem of strong transverse laser beams illuminating the sample
f7g.

New dynamical features of solitons and possibilities for
applications arise in media with nonlinearities different from
the cubic one. The simplest non-Kerr nonlinearity in optical
media is based on a combination of the self-focusing cubic
and self-defocusing quintic terms. Observation of the cubic-
quintic sCQd optical nonlinearity was reported in the PTS
crystalf8g, chalcogenide glassesf9g, and certain organic ma-
terials f10g sa caveat is that it may come along with strong
nonlinear absorptionf11g; however, for short propagation
distances, relevant to experiments with spatial solitonsf13g,
the loss may be insignificant, as analyzed in detail in Ref.
f12gd.

Models were also elaborated that applied the CQ nonlin-
earity to BECs, where the self-repulsive quintic term intends
to account for three-particle collisions competing against bi-
nary collisions with the negative scattering lengthswhich
corresponds to the attractive interactionsd f14g. However, in
this case the nonlinear-loss term, which takes into regard a
possibility that the triple collisions kick out atoms from the
BEC into an incoherent component of the gas, must also be
taken into regard, and, as the BEC evolves in time rather
than in z, an accumulating effect of the nonlinear loss is
expected to be more damagingf15g.

The NLS equations1d with the CQ nonlinearity can be
cast, after imposing appropriate normalization, in the follow-
ing form:

i
] C

] z
+

]2C

] x2 + WsxdC + 2uCu2C − uCu4C = 0. s3d

Indeed, the ratio between the nonlinear coefficients, as set in
Eq. s3d, is achieved through a rescaling on the wave field,
and the coefficients in front of the terms with the derivatives
are normalized through a rescaling ofz and x, while the
expression for the effective potentialsalias the modulated
part of the refractive indexd, Wsxd, which is proportional to

n0sxd from Eq. s1d, remains arbitrary. Solitons are sought for
in the usual form,Csx,zd=expsikzdRsxd, where k is the
propagation constant, andRsxd obeys the equation

− kR+ R9 + WsxdR+ 2R3 − R5 = 0. s4d

In the free space, withWsxd;0, an exact soliton solution to
Eq. s4d is well known f17g,

R2sxd =
2k

1 +Î1 − 4k/3coshs2Îkxd
, s5d

where the propagation constant takes values in an interval
bounded by a threshold, 0,k,kthr;3/4. The integral
power s2d of the exact soliton solutions5d is

Q0skd =
Î3

2
lnSÎ3 + 2Îk

Î3 − 2Îk
D . s6d

Recently, solitons in the CQ model, combined with the
modulation of the refractive index corresponding to a single
waveguideschanneld, were studied in detail in Ref.f16g. The
guiding channel of a widthD and depthU.0 corresponds to

Wsxd = H0, uxu . D/2

U, uxu , D/2
J . s7d

A drastic difference between the CQ solitons in the free
space, which are given by Eq.s4d, and those trapped in the
channel is abistability of the soliton family: in the region of
3
4 ,k,kmax above the aforementioned threshold, where the
free-space solitons do not existskmax depends on the chan-
nel’s depth, so thatkmax<U+ 3

4 for U sufficiently larged, the
channel supports two different soliton solutions, “tall” and
“low” ones scalled in this way due to difference in their
amplitudesd, which pertain to the same value ofk. Simulta-
neously, the tall solitons are broader and the low ones are
narrower. On the other hand, exactly one soliton existssas in
the free-space CQ modeld in the region of 0,k,

3
4.

No soliton bistability occurs in the same guiding channel
with the usual Kerrscubic-onlyd nonlinearity. In fact, in this
case the soliton solutions are in one-to-one correspondence
with modal eigenfunctions of the corresponding linear chan-
nel waveguide and may be classified according to the num-
ber of zeros in the solutionsso that a given number of zeros
defines a single solitond f18g.

An important issue is stability of the soliton solutions. In
the free-space models, it frequently happens that one of the
two coexisting soliton branches is stable, while the other one
is not. This is suggested by the known Vakhitov-Kolokolov
sVK d criterion, which, for those models where its validity
can be proven, gives a necessary stability condition for a
solution branch characterized by the dependenceQskd f19g:
dQ/dk.0. Coexisting branches feature opposite signs of
this derivativessee belowd. Nevertheless, systematic stability
tests based on direct simulations have demonstrated thatboth
soliton branches in the CQ-nonlinear channel waveguide are
stable, i.e., the VK criterion does not apply to that model.
Such a bistability is, obviously, promising for applications to
all-optical switching. Curiously, in this model the VK crite-
rion fails in a wayoppositeto how this is known to occur in
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other cases, when some solitons, which are predicted by the
criterion to be stable, turn out to be unstablesagainst pertur-
bation modes corresponding to complex eigenvalues, for
which the VK criterion is irrelevantd. An example of that is
provided by the family of gap solitons in the standard model
of a fiber Bragg gratingf20g.

The objective of this work is to find various species of
solitons in the CQ model combined with a periodic array of
waveguides, corresponding to a periodic functionn0sxd in
Eqs.s1d ands4d. In order to introduce a model that is closer
to optical multichannel systems, we assume the modulation
of n0sxd in the form of a periodicswith a periodLd array of
waveguiding cores of the widthD, separated by buffer layers
of the width L−D fcf. the expressions7d for the channel
waveguideg,

Wsxd = H0, D + Ln , x , Ls1 + nd − D

U, Ln , x , D + Ln
J, n = 0,1,2,¯ .

s8d

Note that the linear Schrödinger equation with the periodic
potential in the form ofUsxd=−Wsxd, whereWsxd is taken in
the form of Eq. s8d, constitutes the well-known Kronig-
PenneysKPd model, which admits calculation of the corre-
sponding band structure in an analytical formf21g ssolitons
in a model combining the KP potential and the usual cubic
nonlinearity were very recently considered in Ref.f22gd.

Once the underlying CQ NLS equation was fixed in the
form of Eq. s1d, the parametersU ,D, andL of the KP po-
tential s8d are irreducible. To them, the integral powers2d
must be added as an intrinsic parameter of the soliton fami-
lies.

In this work, we find several species of stable solitons in
the CQ-nonlinear KP model. First of all, in the case of a
relatively weak KP potential, we find, together with two co-
existing stable branches of the fundamentalsSHd solitons
ssimilar to those found in Ref.f16g in the single-channel
modeld, various types of stable higher-order solitons, includ-
ing symmetric and antisymmetric double-humpedsSDH and
ASDHd ones, two kinds of three-humpedsTHd solitons, with
the phase difference zero orp between the central and side
peaks, and so on. Similar to the SH solutions, each family of
the multi-humped solitons features the bistability. A principal
difference from the CQ single-channel model in which the
integral powerQ of the SH soliton takes all the values from
0 to ` is that, in the KP model, the SH soliton exists up to a
finite maximum valueQmax

sSHd, above which only multihumped
solitons can be foundsan attempt to increaseQ by a small
increment above the maximum value leads to appearance of
a persistent breather instead of the stationary solitond. In fact,
the CQ-nonlinear KP model features abeam-splittingprop-
erty, which may be of obvious interest to applications: soli-
tons of any type, with a given number of the peaks, are
stable, but they exist in a finite range ofQ; the increase of
the integral power results in consecutive appearance of addi-
tional peaks, which correspond to subpulses trapped in local
channels of the periodic structure. Quite plausibly, the latter
feature is common to a general class of models withsatu-
rable nonlinearity, of which the CQ one is a simplest repre-

sentative. With the transition to a strong KP potential, the
bistability disappears.

Another distinctive feature of the CQ model with the pe-
riodic substrate is the band structure of the soliton solutions.
We will demonstrate that, as well as in the model combining
the self-focusing Kerr nonlinearity and a periodic potential,
the solitons tend to belong to a semi-infinite gap under the
bottom of the Bloch band structure corresponding to the
given periodic potential in the linear model, while finite gaps
between the Bloch bands remain emptysnevertheless, soli-
tons are also found in the finite gaps, if the KP potential is
strong enoughd. However, in contrast to the situation in the
Kerr model, the fundamental-soliton band isfinite itself, be-
ing localized near the top of the semi-infinite gap.

Another step ahead made in this paper in comparison with
the study of solitons in the single-channel CQ model consid-
ered in Ref.f16g is that the solitons’ stability was investi-
gated there only in direct simulations. In this work, we ex-
plore the stability by means of both computation of the
corresponding eigenvalues from the linearized version of Eq.
s1d, and in direct simulations. As a result, we conclude that
all the solitonssat least, with up to five humpsd are stable.
Importantly, in all the cases, the coexisting branches of the
soliton solutions stwo or, sometimes, fourd, with both
dQ/dk.0 anddQ/dk,0, are found to be completely stable;
note that the branch of the latter kind are stablecontrary to
the prediction of the VK criterion.

The paper is organized as follows. In Sec. II, we present
results for the fundamentalsSHd solitons, including their sta-
bility and location in thek space relative to the band struc-
ture of the KP potential, in the case when the potential is
relatively weak, and solitons exist solely in the semi-infinite
band. For the same case, results for the double-humped soli-
tons, of both SDH and ASDH types, are summarized in Sec.
III, and, for the TH solitons together with some higher-order
ones, in Section IV. In Sec. V, we briefly consider the case of
a strong potential, when the bistability does not take place,
and stable fundamental and double-humped solitonsswhich
are very different from those existing in the semi-infinite gap
in the case of the weak potentiald are found in finite gaps of
the KP band structure. The paper is concluded by Sec. VI.

II. SINGLE-HUMPED SOLITONS

In Ref. f16g, the CQ solitons trapped in the channel wave-
guides7d were found both in a numerical form and by means
of the variational approximation. In this paper, we focus on
the numerical investigation, as the KP potentials8d makes
variational expressions rather ponderous. As concerns ana-
lytical considerations, an exact result can be derived by in-
tegration of Eq.s4d inside each segment withWsxd=const
and by matching the solutions at junctions between the seg-
ments, in essentially the same way as it was done for the
single-channel CQ model in Ref.f16g. Assuming solitons
with a single maximum, it is possible to demonstrate that the
soliton’s amplitudeRmax fthe maximum value of the field
Rsxdg belongs to the interval

Î3 −Î3 − 4sk − Ud , 2Rmax
2 /Î3 , Î3 +Î3 − 4sk − Ud

s9d

sunder certain conditions, this inequality applies to multi-
peaked solutions tood. An obvious consequence of this in-
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equality is an upper limit on the propagation constant,

kmax, U + 3
4 s10d

fin the case ofU=0, it goes over into the conditionk,
3
4 for

the exact free-space solitons5dg. It is relevant to note that, in
the case of the Kerrscubic-onlyd nonlinearity, one obtains a
less restrictive and less definite inequality instead of Eq.s9d,
k,U+fRmaxskdg2 f18g. In fact, the latter result implies that
the values ofk available to the fundamental solitons in the
Kerr model are not limitedssee also Ref.f22gd, while Eq.
s10d shows that in the CQ model,k is definitely bounded
from above. This fact will have important consequences con-
cerning the soliton bands in the modelssee belowd.

As well as in the case of the one-channel model, the nu-
merical solution of the stationary equations4d with the KP
substrate yields a single fundamentalsSHd solution for a
given k, if k is smaller than a certain threshold valuekthr; in
the region ofkthr,k,kmax, there are two coexisting SH soli-
tons and no solution is found fork.kmax fsee also Eq.s10dg.
In Fig. 1, this situation is illustrated by a generic example of
the curveQskd sthe figure includes similar characteristics for
higher-order solitons, see details belowd.

We stress that, at values ofQ larger thanQmax
sSHd<9, at

which the fundamental-soliton curve ends in Fig. 1, SH soli-
tons do not existsor, at least, the numerical algorithm could
not converge to such a solitond. The nonexistence of the SH
solitons at largeQ is a specific feature of the present model,

which can be understood as follows. In the model with the
CQ nonlinearity, the amplitude of the solitons is limited due
to the presence of the self-defocusing term, which is obvious
from the exact solution for the free-space solitons5d, where
RsxdøÎ3/2. Therefore, the increase of the soliton’s integral
power snormd can only go via the increase of its width; in
particular, the width of the exact solitons5d diverges
,lnf1/skthr−kdg as one approaches the threshold valuekthr

= 3
4 fthis is also obvious from the expressions6d for the soli-

ton’s normg. The indefinite increase of the soliton’s width is
possible, indeed, in the free space, as well as in the case
when the soliton is pinned in one channelf16g. However, the
expansion of the soliton on top of a periodic substrate inevi-
tably leads to formation of new peaksshumpsd, as will be
shown in detail below. On the other hand, in the model with
the cubic-only nonlinearity, very largeQ implies that the
soliton’s amplitude is very large,,Q, and its width is very
small, ,1/Q, therefore, an SH soliton with an indefinitely
large norm can exist in the periodic potentialf1g.

We also tried to check what happens in direct simulations
srather than when searching for stationary solutionsd as a
result of an attempt to create an SH soliton with the integral
power exceedingQmax

sSHd. To this end, the soliton correspond-

ing to Q=Qmax
sSHd was stretched, replacingRsxd by R̃sxd

;Rfs1+«dxg with «.0, and the thus-stretched pulse was
then used as the initial configuration for direct simulations of
Eq. s3d. With « relatively small sfor instance«=0.1d, the
simulations generate a nearly stationary soliton with very
weakssmall-amplituded and irregular, but persistent, intrinsic
vibrations sa single-humped breatherd, see an example in
Fig. 2. For larger« sfor example,«=0.25d, the result is dif-
ferent: in accordance with the explanation given above, new
side peaks are formed in the wings of the soliton, pulling into
themselves a bigger part of the total power; then, a large
share of the power returns to the central peak, and the power-
exchange cycle repeats itself quasiperiodically, as shown in
Fig. 3. We stress that, although the side peaks may be small

FIG. 1. sColor onlined The integral powers2d, Q, for the solitons
of diverse types vs the propagation constantk, in the CQ nonlinear
model with the periodic Kronig-Penney potential. The depth and
width of the potential wells areU=0.7 andD=3, and the thickness
of the buffer layer between the wells isL−D=3. The labels SH,
SDH, and ASDH pertain, respectively, to the single-humped, sym-
metric double-humped, and antisymmetric double-humped solitons.
Furthermore, the labels PPPTH and NPNTH mark the families of
three-humped solitons of thes++ +d ands−+−d sin the gap between
the top and bottom segments of the PPPTH branch, the numerical
code could not converge to a solutiond. Each curve ends at the
maximum value ofQ beyond which the corresponding soliton fam-
ily does not exist, see the text.

FIG. 2. An example of the single-humped breather, obtained
from the single-humpedsSHd soliton corresponding to the end point
of the SH branch in Fig. 1, by stretching it with the factor 1+«
=1.1. Shown is the peak power of the resulting solution,uCsx
=0du2 vs z. Note a very small amplitude of the irregular oscillations
around a mean value of the peak power.
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at some stage of the oscillations, they never disappear;
hence, this object may be called athree-humped breather. In
both cases shown in Figs. 2 and 3, examination of the nu-
merical data demonstrates that the breather does not suffer
any tangible radiation loss.

Typical examples of the fundamental solitons in the bista-
bility range, where Fig. 1 predicts two SH solitons with dif-
ferent amplitude and width for the samek, are displayed in
Fig. 4. We note that because the soliton’s field decays, at
uxu→`, as exps−Îkuxud, and the maximum value ofk attain-
able by the soliton trapped in the potential structure is essen-
tially larger thankthr=

3
4 in the free space, the trapped soliton

may have sharper edges than the free one, which is a clear
advantage for the multichannel systems employing spatial
solitons. The fact that the trapped CQ solitons have sharper
edges than their counterparts in the free space is, indeed,

corroborated by a detailed consideration of the solitons’
shapes.

Stability of the SH solitons was checked by means of the
numerical computation of eigen-values of small perturba-
tions, linearizing Eq.s1d around the stationary soliton solu-
tions. The result is simple: all the fundamental solitons are
stable. The spectrum of the eigenfrequencies contains one
zero value, all the other ones being realsan example of the
spectrum will be displayed below for the case of SDH soli-
tons, see Fig. 9d. The stability was also checked directly, in
simulations of a soliton that was randomly perturbed at the
initial point, z=0. An example that illustrates the stability of
all the fundamental solitons is displayed in Fig. 5.

It seems plausible that an input beam whose profile is far
from the exact soliton will self-trap not into a static soliton,
but rather into a breather, similar to what is shown in Figs. 2
and 3 and was shown in detail in Ref.f16g for the CQ model
with the single-channel potentials7d. More detailed consid-
eration of this issue is beyond the scope of this work.

It is obvious from Fig. 1 that the upper branch of the
SH-soliton familydoes notsatisfy the VK stability criterion,
dQ/dk.0 f19g. Nevertheless, both the stability eigenvalues
and direct simulations clearly demonstrate that the entire up-
per branch is stablesas well as its lower counterpartd. In
particular, the stable soliton displayed in Fig. 5 belongs to
the upper branch. Thus, the VK criterion fails in the case of
the model combining the CQ nonlinearity and the potential.
sThe same was already concluded, for the case of the single-
channel potential, in Ref.f16g; however, in that work the
stability was not verified by computation of the eigenvalues.d
On the other hand, the validity of the criterion for this type of
system has never been proven, to the best of our knowledge.
In any case, this result demonstrates validity limits of the VK
criterion.

An important issue is to identify the location of the soli-
tons, in thek space, relative to the underlying band structure
of the linear KP model. The corresponding quasiperiodic
Bloch modes have the usual form,Rsxd=expsiqxdPsxd,
whereq is a real quasimomentumsin terms of quantum me-

FIG. 3. Contour plots show a three-humped breather obtained
from the SH soliton corresponding to the end point of the SH
branch in Fig. 1, by stretching it with the factor 1+«=1.25.

FIG. 4. sColor onlined Two typical examples of the fundamental
soliton, for the same parameters as in Fig. 1. Both solitons pertain
to the propagation constantk=1 sthe soliton with the larger and
smaller amplitude pertains, respectively, to the upper and lower
branch in Fig. 1d. The underlying Kronig-Penney potential −Wsxd is
shown in the lower part of the figure.

FIG. 5. sColor onlined A typical example of stable evolution of
the fundamentalssingle-humpedd soliton sits unperturbed form is
the upper one in Fig. 4d with an initial perturbation whose ampli-
tude is 3% of the soliton’s amplitude.
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chanicsd, andPsxd is a periodic function with the periodL.
As is knownf21g, the band structure of the KP potentials8d,
k=ksqd, is determined by a relation

k − k̃

2Îkk̃
sinhfsL − DdÎkgsinsDÎk̃d

+ coshfsL − DdÎkgcossDÎk̃d = cossLqd, s11d

where k̃;U−k. Equations11d gives rise to a semi-infinite
band of Bloch states atk,0, and several finite bands atk
.0. The bands are separated by gaps, in which solitons may
sor may notd be found in a nonlinear model. Beneath the
lowest finite band, a semi-infinite gap, extending tok→ +`,
is locatedsin particular, the entire region ofk.U belongs to
the semi-infinite bandd. Typical examples of the band struc-
ture in the linear KP model, with a weak and strong potential,
are displayed in Fig. 6. In particular, for large values of the

productDk, it is easy to demonstrate that the bands are ex-
ponentially narrow, with the width

Dkband, exps− DÎkd . s12d

At typical values of parameters for a relatively weak KP
potential,U=0.7 andD=L−D=3, to which Figs. 1 and 4
pertain, the linear KP model gives rise to a single finite
Bloch band, 0.3195,k,0.4356fsee Fig. 6sadg. All the soli-
ton familiessSH and higher-order onesd presented in Fig. 1
are located in the semi-infinite gap precisely beneath this
band si.e., at k.0.4356d, while the finite gap, 0,k
,0.3195, which separates the finite and semi-infinite bands,
remains empty.

It is relevant to mention that, in the model with a periodic
sin particular, sinusoidald potential and self-attracting Kerr
nonlinearity f1–3,23,24g, the solitons completely fill the
semi-infinite gap; if the sinusoidal potential is strong enough,
then soliton solutions are found inside finite gaps toosthe
same is possible in the present model if the KP potential is
stronger, see Sec. Vd. The situation is opposite in the model
combining the sinusoidal potential and self-defocusingsanti-
Kerrd cubic nonlinearity. In that case, the semi-infinite gap is
squite naturallyd empty, while stable envelope solitonsswith
a negative effective massf24gd are found in the finite gaps, as
shown in Ref.f23g. sVery recently, such gap solitons have
been created in the BEC loaded in an OL potentialf25g.d

A difference of the CQ model from the cubic one, which
is obvious from Fig. 1fand also from the inequalitys10dg, is
that the solitons fill a finite top part of the semi-infinite band,
while the rest of it remains empty. Thus, in the CQ model,
the situation is, in a certain sense, intermediate between
those in the Kerr and anti-Kerr models. In the case of a
relatively weak potential, the soliton band lies beneath the
bottom of the linear-KP band structure, but it has a finite
width because of the saturable character of the nonlinearity
in the CQ model.

III. DOUBLE-HUMPED SOLITONS

Two families of double-humped solitons are easily found
in the present model, corresponding to even and odd solu-
tions Rsxd of Eq. s4d, i.e., SDH and ASDH solitons, respec-
tively. The corresponding solution families are described by
the curvesQskd shown in Fig. 1. As well as their SHsfun-
damentald counterparts, each family of the double-humped
solitons also features the bistability, in the sense of having
two different solutions corresponding to the samek from the
respective interval,kthr,k,kmax. Moreover, the family of
the SDH solitons demonstrates the coexistence offour dif-
ferent solutions, in a narrow interval ofk close tokmax sso
that it hasthreeturning points, rather than one, in particular,
at D=L−D=3.4,U=0.7 for SDH solitonsd. In fact, this fea-
ture can be more pronounced at other values of the param-
eters. As well as theQskd characteristic for the SH solitons,
the ones for the double-humped soliton, shown in Fig. 1,
cannot be continued past the points at which they end,Q
=Qmax

sSDHd ,Q=Qmax
sASDHd, andQ=Qmax

sTHd.
Typical examples of SDH and ASDH soliton pairs, per-

taining to a common value ofk, are presented in Fig. 7. It is

FIG. 6. Typical examples of the Bloch-band structure in the
Kronig-Penney model with a weaksad and strongsbd potential. The
parameters areU=0.7 andD=L−D=3 in sad and U=6 andD=L
−D=6 in sbd. The entire region ofk,0 is a semi-infinite band.
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noteworthy that theQskd curve for the SDH solitons ends at
Qmax

sSDHd<19.3, which is, approximately, twice the above-
mentioned end-point value,Qmax

sSHd<9, of the SH-soliton
branchspertaining to the same values of the parameters of
the KP potentiald. For the ASDH family, the endpoint value
is Qmax

sASDHd<18.7. Together with the shapes of the SDH and
ASDH solitons displayed in Fig. 7, these observations
strongly suggest that the double-humped solitons may be
considered as bound states of two SH solitons, with the
phase shift between them 0 orp, respectively. This interpre-
tation is strongly supported by an observation that, if the
Qskd curves in Fig. 1 are redrawn so that the curve for soli-
tons with N peaks is replaced byQskd /N spower per peak,
which actually affects the cases ofN=2 and 3d, then the
bottom parts of the curvesQskd /N sthose up to the turning
pointd are practically identical for all the families.

It may also be useful to look at the soliton families in
terms of the dependence betweenk and the soliton’s half-
width w sinstead ofQd. To this end, we adopt the integral

definition of the half-width, as it must apply to solitons with
quite different shapes:

w = Q−1E
0

`

R2sxdxdx. s13d

Typical examples of thewskd characteristics for both the
symmetric and antisymmetric double-humped solitons are
displayed in Fig. 8. For comparison, thewskd characteristic
for the fundamental SH soliton is also shown in the figure.
As it was explained above, the soliton’s amplitude in the CQ
model is bounded from above; for this reason, the double-
humped soliton is about three times as broad as its SH coun-
terpart. In addition, the SDH soliton is somewhat narrower
than its ASDH counterpart, as the former soliton is a “denser
packed” one.

Double-humped solitons do not exist in the CQ model
with the single-channel potentials7d f16g, but they are
known in the model with the Kerrsself-focusing cubicd non-
linearity and sinusoidal potentialf1–3g. However, the
double-humped solitons in the present model play a princi-
pally different role. As it was said above, in the case of the
cubic nonlinearity the SH solitons exist at all the values of
the integral power, up toQ=`. In the CQ model, they exist
only in the region ofQ,Qmax

sSHd, as was shown above. Thus,
while in the cubic model the single- and double-humped soli-
tons exist in parallel, thebeam splittingtakes place in the CQ
model. In the intervalQmax

sSHd,Q,Qmax
sSDHd, only the double-

humped solitons are possible.fIn the subintervalQmax
sSHd,Q

,Qmax
sASDHd, both SDH and ASDH solitons are found, while in

the smaller region,Qmax
sASDHd,Q,Qmax

sSDHd, only the former
type is present. For instance, in the cases shown in Fig. 1,
these two intervals are, approximately, 9,Q,18.7 and
18.7,Q,19.3.g Of course, higher-order solitons, with more
than two peaks, also exist in the same region and beyond. On
the other hand, extensive numerical exploration of the pa-

FIG. 7. sColor onlined Generic examples of the symmetricsad
and antisymmetricsbd double-humped solitons belonging to the
families presented in Fig. 1. In each panel, a pair of solitons found
at the same value of the propagation constant,k=1, are displayed.

FIG. 8. Characteristics for the families of the single-humped
sSHd, symmetric double-humpedsSDHd, and antisymmetric double-
humpedsASDHd solitons, in the form of the half-widthw vs the
propagation constantk in the model withU=1 andD=L−D=2.
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rameter space has not turned up any example of asymmetric
double-humped solitons, i.e., ones that would be neither
symmetric nor antisymmetric.

The stability of the double-humped solitons was studied,
as well as in the case of the SH solitons, through the com-
putation of the eigenfrequencies of small perturbations and
in direct simulations. Both methods have shown that the
families of the SDH and ASDH solitons are completely
stable in their entire existence regions. It is noteworthy that,
in the narrow region wherefour different SDH solitons co-
exist ssee Fig. 1d, theyall are stable.

A typical example of the full spectrum of the perturbation
eigenfrequencies for an ASDH soliton is displayed in Fig. 9,
and Fig. 10 shows relaxation of perturbed double-humped
solitons. Note that, as well as the SH soliton family, the
double-humped solitonsdo not obey the VK criterion be-
cause the branches withdQ/dk,0 are as stable as their
counterparts withdQ/dk.0.

A very strong perturbation applied to a double-humped
soliton can result in transition to a soliton of a different type.
For example, Fig. 11 shows a strong perturbation switching
the double-humped soliton into one with four peaks, which
also demonstrates the existence of a plethora of higher-order
solitons in the modelssee also Sec. IVd.

As it was mentioned above, the integral power of the
double-humped solitons is bounded from above. An attempt
to push the power of the SDH soliton above the maximum
value results in a further step in thebeam splittingcascade,
generating extra side peaks, so that the soliton assumes a
breathingsnonstationaryd four-humped shape, similar to that
obtained in Fig. 11scf. the three-humped breather in Fig. 3d.
Actually, in the case displayed in Fig. 11 it is observed that
the attempt to make the two in-phase peaks in the SDH soli-
ton too high inducesrepulsion between them because the
self-defocusing quintic terms dominate for large values of
the amplitude; as a result, a part of the power is shed off into
the adjacent cells, giving rise to the extra peaks.

On the other hand, an attempt to pump too much power
into the ASDH soliton leads to a different outcome: as the

FIG. 10. sColor onlined Stable relaxation of the symmetricsad
and antisymmetricsbd double-humped solitonssthe same as those
shown in Fig. 7d with an initial perturbation whose amplitude is 5%
of the soliton’s amplitude.

FIG. 11. sColor onlined An initial perturbation whose amplitude
is 20% of the soliton’s amplitude switches the symmetric double-
humped solitonfthe same as that shown, in the unperturbed form, in
Fig. 7sadg into a higher-order nonstationarysbreathingd four-humped
soliton.

FIG. 9. The set of eigenfrequencies for small perturbations
around the antisymmetric double-humped soliton, which is the
taller one from Fig. 7sad.
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two humps with the phase shift ofp repel each other, one of
the “overpumped” humps makes a jump to an adjacent cell
of the KP structure; thus, there appears an antisymmetric
soliton with two humps separated by a nearly empty cellsnot
shown hered. In fact, entire families of such double-humped
solitons with an empty cell between the peaks can be easily
constructed.

IV. THREE-HUMPED AND HIGHER-ORDER SOLITONS

Stationary counterparts of three-humped breathers, such
as the one presented in Fig. 3, can be found too, and they all
form families. An example of a three-humpedsTHd soliton
structure with thes−+−d signature of the peaks is shown in
Fig. 12. This example stresses that the formation of the TH
soliton is specific to the model with the periodic potential,
while the CQ model with the single-channel potential sup-
ports only SH solitons, with arbitrarily largeQ. Examples of
the three-humped solitons of thes++ +d type are shown in
Fig. 13. These examples stress that the three-humped family
shares the bistability property with the lower-order solitons.

The dependencesQskd for the three-humped soliton fami-
lies are included in Fig. 1. The large gap in the curve for the
branch of thes++ +d type means that, in the corresponding
interval of the values ofQ, the numerical procedure could
not generate any solution of this type; whether the solutions
really do not exist in the gap or merely could not be found
remains unclear.

It is instructive to compare the maximum value of the
integral power in the latter branch,Qmax

sPPPTHd<27, to the limit
valuesQmax

sSHd andQmax
sSDHd for the single-humped and symmet-

ric double-humped solitons in the same figuresFig. 1d. Ob-
viously, Qmax

sPPPTHd is very close to3Qmax
sSHd and, simultaneously,

to s3/2dQmax
sDHd, which confirms that the TH soliton of the

s++ +d type is a bound state of three fundamental ones.

V. SOLITONS IN FINITE GAPS IN THE MODEL WITH A
STRONG POTENTIAL

While in the case of the weak potential all the solitons
exist solely in the semi-infinite band, in the case of a stronger
potential, with deeper and/or broader potential wells between
the guiding cores, when the KP band structure contains many
narrow Bloch bandsfsee Fig. 6sbdg, the solitons are found
also in finite gaps between the bands. Typical examples of
the corresponding fundamental and double solitonssboth
symmetric and antisymmetric onesd are displayed in Fig. 14.
A drastic difference from the solitons that were found, for a
weaker potential, in the semi-infinite gapscf. Figs. 4 and 7d
is the “flat-top” shape of the solitons in the finite gapsshow-
ever, they are not absolutely flat inside the waveguiding
cores, as it is easy to prove that soliton solutions cannot
include constant partsd.

An example of theQskd characteristic for the full family
of the fundamental solitons found in the deep KP potential is
shown in Fig. 15scf. Fig. 1 for the solitons found in the
shallow KP potential, when all solitons belong to the semi-
infinite gapd. For values of the parameters corresponding to
the case shown in Fig. 15, there are five finite Bloch bands
sin addition to the semi-infinite one,k,0d, see Table I. Note
that the bands become extremely narrow, obeying the ana-
lytical estimates12d.

As is seen in Fig. 15, the gap 0,k,1.002 96, which
separates the semi-infinite bandsk,0d and the first finite
one, remains empty, while the fundamental-soliton solutions
fill the gap between the first and second finite bands. The
curve representing the soliton family is cut by the four nar-
row Bloch bands, and then continues into the semi-infinite
gap, where it ends. Families of the symmetric and antisym-
metric double solitons have approximately the same struc-
ture.

Note that Fig. 15 features no bistability. In fact, detailed
examination of the evolution of theQskd curves with the
increase of the depthU of the KP potentials8d shows that the
lower end of the bistable curvesssee Fig. 1d moves to the

FIG. 12. sColor onlined A three-humped stable soliton, found at
k=1, in the model withU=1, D=3 and the thickness of the buffer
layer L−D=1. For comparison, the dashed curve shows a single-
humped soliton, found also fork=1, in the single-channel counter-
part of the Kronig-Penney model.

FIG. 13. sColor onlined Two three-humped stable solitons, found
for k=1, in the model withU=0.7 andD=L−D=3.
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right, approaching the turning point, and, at some critical
value of U, the turning point disappears.sHence, the bista-
bility disappears too.d

Direct simulations demonstrate that all the solitons we
have found in the finite gaps arestable. An example of stable
relaxation of a perturbed fundamental soliton is shown in
Fig. 16. Note that theQskd curve of the fundamental soliton
family in Fig. 15 has a negative slope and thus contravenes
the VK criterion srecall the criterion demandsdQ/dk.0d,
but the family is, nevertheless, completely stable.

VI. CONCLUSION

We have presented a model combining the Kronig-Penney
sKPd potential, in the form of a periodic array of rectangular
potential wells, and the cubic-quinticsCQd nonlinearity. The
system supports a plethora of soliton states, including funda-
mental single-humped solitons, symmetric and antisymmet-
ric double-humped ones, three-peak solitons with and with-
out the phase shiftp between the peaks, etc.

FIG. 14. sColor onlined Typical examples of the fundamental
sad, double-symmetricsbd, and double-antisymmetricscd solitons
with the flat-top shape, found in a finite gap of a deep Kronig-
Penney potential, withU=6, D=L−D=6, andk=2. All these soli-
tons are stable.

FIG. 15. The curveQskd for the family of the fundamental flat-
top solitons extending across the finite gaps into the semi-infinite
one forU=6 andD=L−D=6. Crosses show where the curve is cut
by very narrow Bloch bands. The exact locations and widths of the
bands are given in Table I.

TABLE I. Finite Bloch bands in the Kronig-Penney potentials8d
with U=6 and D=L−D=6, the same case as shown in Fig. 15.
Each band is found in the corresponding intervalkleft,k,kright,
with the width Dk=kright−kleft. The analytical estimate for the
width, sDkdest, is given by Eq.s12d.

kleft kright Dk sDkdest

1.00296 1.00704 5310−3 2.5310−3

2.70203 2.70213 10−4 0.5310−4

4.116149 4.116156 7310−6 5310−6

5.1554377 5.1554386 0.9310−6 1.2310−6

5.7878931 5.7878932 10−7 5310−7

MERHASIN et al. PHYSICAL REVIEW E 71, 016613s2005d

016613-10



If the potential is weak, then all the solitons fall into the
semi-infinite gap beneath the linear band structure of the KP
potential, while finite gaps between the Bloch bands remain
empty. However, in contrast with what was found in the
model combining a weak periodic potential and the self-
focusing Kerr nonlinearity, in the CQ model only a finite
zone near the top of the semi-infinite gap is filled by the
solitons, which is a consequence of the saturable character of
the nonlinearity. In the case when the KP potential is deeper,
and/or the buffer layers between the guiding cores are
broader, fundamental and doublessymmetric and antisym-
metricd stable solitons, with a characteristic flat-top shape,
are found in finite gaps that separate the Bloch bands in the
linear KP model.

Both the computation of stability eigenvalues and direct
simulations of perturbed solitons show that they all are
stable. As well as in the recently studied CQ model with the
single-channel potential, and on the contrary to the model
with the Kerr nonlinearity, the soliton families feature bista-
bility, in the form of two ssometimes, even fourd different
states found for a given propagation constantk, with differ-
ent values of the integral powerQ. However, the bistability
disappears in the case of a very deep potential. It is notewor-
thy that the solution branches with bothdQ/dk.0 and
dQ/dk,0 are stable, disobeying the Vakhitov-Kolokolov
criterion,

Another distinctive feature of the model is thebeam-
splitting property: increase ofQ results in a consecutive in-
crease of the number of peaks in the soliton’s shape, each
corresponding to a subbeam trapped in an individual channel
of the periodic structure. This property is explained by an
upper bound on the soliton’s amplitude in the CQ model,
which allows one to increase the beam’s power only through
its broadening. The broadening leads to the formation of ad-
ditional peaks in the soliton through trapping of new sub-
beams in adjacent troughs of the potential structure. The
beam splitting and strong stability of the resultant multipeak
solitons are effects of direct interest to applications. It is
plausible that characteristic features demonstrated by the
present model will be shared by more general ones combin-
ing a saturable nonlinearity and a periodic potential sub-
strate.

ACKNOWLEDGMENT

This work was supported, in a part, by the Israel Science
Foundation through the Grant No. 8006/03.

f1g B. A. Malomed, Z. H. Wang, P. L. Chu, and G. D. Peng, J.
Opt. Soc. Am. B16, 1197s1999d.

f2g G. L. Alfimov, V. V. Konotop, and M. Salerno, Europhys. Lett.
58, 7 s2002d.

f3g G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Sal-
erno, Phys. Rev. E66, 046608s2002d.

f4g N. K. Efremidis and D. N. Christodoulides, Phys. Rev. A67,
063608s2003d; A. Smerzi and A. Trombettoni, Chaos13, 766
s2003d.

f5g B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys.
Lett. 63, 642 s2003d.

f6g P. Xie, Z.-Q. Zhang, and X. Zhang, Phys. Rev. E67, 026607
s2003d; A. Ferrando, M. Zacares, P. F. de Cordoba, D. Binosi,
and J. A. Monsoriu, Opt. Express11, 452 s2003d.

f7g J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N.
Christodoulides, NaturesLondond 422, 147 s2003d.

f8g B. L. Lawrence, M. Cha, J. U. Kang, W. Torruellas, G. Stege-
man, G. Baker, J. Meth, and S. Etemad, Electron. Lett.30, 889
s1994d; E. W. Wright, B. L. Lawrence, W. Torruellas, and G. I.
Stegeman, Opt. Lett.20, 2481s1995d; B. L. Lawrence and G.
I. Stegeman,ibid. 23, 591 s1998d.

f9g F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, J.

Non-Cryst. Solids274, 232s2000d; K. Ogusu, J. Yamasaki, S.
Maeda, M. Kitao, and M. Minakata, Opt. Lett.29, 265s2004d.

f10g C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L.
Zhao, and Y. Nie, J. Opt. Soc. Am. B19, 369 s2002d.

f11g G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F.
Smektala, and F. Sanchez, Opt. Commun.219, 427 s2003d; F.
Sanchez, G. Boudebs, S. Cherukulappurath, H. Leblond, J.
Troles, and F. Smektala, J. Nonlinear Opt. Phys. Mater.13, 7
s2004d.

f12g Y.-F. Chen, K. Beckwitt, F. W. Wise, and B. A. Malomed,
Phys. Rev. E70, 046610s2004d.

f13g S. Maneuf and F. Reynaud, Opt. Commun.65, 325 s1988d; J.
S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L.
Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, Opt.
Lett. 15, 471 s1990d.

f14g A. Gammal, T. Frederico, L. Tomio, and P. Chomaz, Phys.
Rev. A 61, 051602s2000d; V. S. Filho, F. K. Abdullaev, A.
Gammal, and L. Tomio,ibid. 63, 053603s2001d; F. K. Abdul-
laev, A. Gammal, L. Tomio, and T. Frederico,ibid. 63, 043604
s2001d.

f15g L. Tomio, V. S. Filho, A. Gammal, and T. Frederico, Nucl.
Phys. A 684, 681Cs2001d.

FIG. 16. Stable evolution of a perturbed fundamental soliton
belonging to a finite gap whose unperturbed shape is shown in Fig.
14sad.

FINITE-BAND SOLITONS IN THE KRONIG-PENNEY… PHYSICAL REVIEW E 71, 016613s2005d

016613-11



f16g B. V. Gisin, R. Driben, and B. A. Malomed, J. Opt. B: Quan-
tum Semiclassical Opt.6, S259s2004d.

f17g Kh. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Opt.
Quantum Electron.11, 471 s1979d; S. Cowan, R. H. Enns, S.
S. Rangnekar, and S. S. Sanghera, Can. J. Phys.64, 311
s1986d.

f18g B. V. Gisin and A. A. Hardy, Phys. Rev. A48, 3466s1993d.
f19g N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn.

Zaved., Radiofiz.16, 10120s1973d fin Russian; English trans-
lation: Radiophys. Quantum Electron.16, 783 s1973dg.

f20g B. A. Malomed and R. S. Tasgal, Phys. Rev. E49, 5787
s1994d; I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zem-
lyanaya, Phys. Rev. Lett.80, 5117s1998d.

f21g R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Ser.

A 130, 499s1931d; C. Kittel, Introduction to Solid State Phys-
ics sWiley, New York, 1995d.

f22g W. Li and A. Smerzi, Phys. Rev. E70, 016605s2004d.
f23g B. B. Baizakov, V. V. Konotop, and M. Salerno, J. Phys. B35,

5105s2002d; V. V. Konotop and M. Salerno, Phys. Rev. A65,
021602s2002d; K. M. Hilligsoe, M. K. Oberthaler, and K. P.
Marzlin, ibid. 66, 063605s2002d; P. J. Y. Louis, E. A. Ostro-
vskaya, C. M. Savage, and Y. S. Kivshar,ibid. 67, 013602
s2003d.

f24g H. Sakaguchi and B. A. Malomed, J. Phys. B37, 1443s2004d.
f25g B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein,

K.-P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett.92,
230401s2004d.

MERHASIN et al. PHYSICAL REVIEW E 71, 016613s2005d

016613-12


