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Finite-band solitons in the Kronig-Penney model with the cubic-quintic nonlinearity
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We present a model combining a periodic array of rectangular potential {tleisKronig-PenneyKP)
potential and the cubic-quinti¢CQ) nonlinearity. A plethora of soliton states is found in the system: funda-
mental single-humped solitons, symmetric and antisymmetric double-humped ones, three-peak solitons with
and without the phase shift between the peaks, etc. If the potential profile is shallow, the solitons belong to
the semi-infinite gap beneath the band structure of the linear KP model, while finite gaps between the Bloch
bands remain empty. However, in contrast with the situation known in the model combining a periodic
potential and the self-focusing Kerr nonlinearity, the solitons fill only a finite zone near the top of the semi-
infinite gap, which is a consequence of the saturable character of the CQ nonlinearity. If the potential structure
is much deeper, then fundamental and doubleth symmetric and antisymmetrisolitons with a flat-top
shape are found in the finite gaps. Computation of stability eigenvalues for small perturbations and direct
simulations show that all the solitons are stable. In the shallow KP potential, the soliton characteristics, in the
form of the integral powe® (or width w) versus the propagation const&nteveal strong bistability, with two
and, sometimes, four different solutions found for a gikdithe bistability disappears with the increase of the
depth of the potential Disobeying the Vakhitov-Kolokolov criterion, the solution branches wlihth
dQ/dk>0 anddQ/dk<0 arestable The curveQ(k) corresponding to each particular type of the solution
(with a given number of local peaks and definite symmetnds at a finite maximum value @f (breathers are
found past the end pointsThe increase of the integral power gives rise to additional peaks in the soliton’s
shape, each corresponding to a subpulse trapped in a local channel of the KP stiaidiaaen-splitting
property. It is plausible that these features are shared by other models combining saturable nonlinearity and a
periodic substrate.
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I. INTRODUCTION it was shown, in a numerical form and by means of a varia-

. . : . . tional approximation, that the model supports a family of
Spatial solitons in multichannel optical systems are a sub: PP PP y

ject _of i_nterest for fundamental studies _and offer pOtemi_aI[S)I(;]t?alr?tig?Tvzﬁc((vsvaH\)/ez(ﬂliEioigs’ é)r:r;?]i(;zla};hi ﬁﬁtnetg:a?fpivlv?ral
applications to photonics. The prototypical model of th's(norm) of the SH soliton

type is based on the one-dimensiondlD) nonlinear

SchrédingefNLS) equation, which governs the evolution of +o

the local amplitude¥(z,x) of the electromagnetic wave QEI W (x)|2dX, (2
along the axiz in a planar nonlinear optical waveguide with —
the local refractive index periodically modulated along the
transverse coordinate In normalized unitgsee, e.g., Ref.
[1]), this equation is

which is a dynamical invariant of Eql), may take any
value, 0<Q< o, the entire family being stable. Symmetric
double-humpedSDH) solitons, which may be regarded as
oV PV bound states of two in—phase SH soIitons, were also found in
i— + —— +ny(x)V + n(wAH ¥ =0, (1) Ref. [1], v_wth a concluspn_ that, for a fixed dlstan_t:ebe-_

dz  JX tween adjacent waveguiding cores, the symmetric solitons
. . . with two distinct peaks exist up to a certain minimum value
where .nO()?) IS proportlon?l _to a Iocal_change of the Imc_aar of the propagation constaht(its definition is given beloyw
refract;ve |nde>§ anan(|W%) is the nonlinear correction to it; 44 4y attempt to create an SDH soliton with a smaller value
on(|w| ):.”2|\I'|, , with n,>0, in the case of the ordinary f i |eads to a merger of the double-humped structure into a
Kerr nonlinearity. Solitons in Eq1) with the Kerr nonlinear single-humped one. Besides that, it was demonstrated that a
term and sinusoidal transverse modulation with a periogp ot spot” (i.e., a strong localized attraction centerodeled
L,ng(x) =€ sin(2wx/L), were studied in Refl]. In that work by an extra term- 8(x—xo) 8(z-2,)V in Eq. (1), with x, fixed
at the midpoint between two adjacent guiding channels, is
able to pull the SH soliton from one channel to the other,

*Email address: merkhasi@post.tau.ac.il which may be used for applications to all-optical switching.
"Email address: gisin@eng.tau.ac.il Later, exactly the same model, based on @& .with the
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gated(effectively 1D Bose-Einstein condensatBEC) with no(x) from Eg. (1), remains arbitrary. Solitons are sought for

attractive interactions between atoms, loaded in an opticain the usual form,¥(x,z)=expikz)R(x), where k is the

lattice (OL) potential[2]. In particular, if the OL is strong propagation constant, arR(x) obeys the equation

enough, the periodic potential splits the BEC into an array of : N

weakly coupled droplets, which suggests the use of a quasi- —kR+R"+W(X)R+2R*-R°=0. (4)

discrete approximation for the investigation of the corre-| ihe free space, witkiV(x) =0, an exact soliton solution to

sponding soliton§3] (this approximation has become a topic Eq. (4) is well known[17]

of intensive studies in the context of BEC4)). '

It is relevant to mention that a multidimensional generali- RP(x) = 2k 5)

zation of Eq.(1), with Pl ox? replaced by the two- or three- 1+1 - 4/3cosh2vkx)

dimensional Laplacian, and the periodic potential made mul-

tidimensional, is also a relevant model for the description owhere the propagation constant takes values in an interval

the BEC in OLs, this multidimensional model, too, support-bounded by a threshold, <Ok<ky,,=3/4. The integral

ing stable soliton§5]. The 2D version of the model applies power(2) of the exact soliton solutiofb) is

to nonlinear photonic crystals as wedlithough in the latter = = ~

case, the nonlinearity coefficient may also be subject to the = N3 (M‘)
. . . Qo(k) In| —= ik

transverse modulatignwhere stable spatial solitons have re- 2 V3 -2vk

cently been predictefB]. Actually, transverse modulation of

the refractive index in optics can be created not only throug

a small periodic variation of the optical density, but also—in

photorefractive media—in airtual form, by means of a sys-

tem of strong transverse laser beams illuminating the samp

(6)

IBecently, solitons in the CQ model, combined with the
modulation of the refractive index corresponding to a single
waveguidechannel, were studied in detail in Ref16]. The
I%uiding channel of a widt and deptHJ >0 corresponds to

[7]. 0, |x>D/2
New dynamical features of solitons and possibilities for WI(x) = {U X <Di2 (7)
applications arise in media with nonlinearities different from '

the cubic one. The simplest non-Kerr nonlinearity in opticalA drastic difference between the CQ solitons in the free
media is based on a combination of the self-focusing cubispace, which are given by E(4), and those trapped in the
and self-defocusing quintic terms. Observation of the cubicehannel is aistability of the soliton family: in the region of
quintic (CQ) optical nonlinearity was reported in the PTS %<k< knax @bove the aforementioned threshold, where the
crystal[8], chalcogenide glassé8], and certain organic ma- free-space solitons do not exid;,., depends on the chan-
terials[10] (a caveat is that it may come along with strong nel's depth, so thd{max*UJf% for U sufficiently large, the
nonlinear absorptiod11]; however, for short propagation channel supports two different soliton solutions, “tall” and

distances, relevant to experiments with spatial solifd®,  “low” ones (called in this way due to difference in their
the loss may be insignificant, as analyzed in detail in Refamplitude$, which pertain to the same value kf Simulta-
[12]). neously, the tall solitons are broader and the low ones are

Models were also elaborated that applied the CQ nonlinnarrower. On the other hand, exactly one soliton exissin
earity to BECs, where the self-repulsive quintic term intendshe free-space CQ modeh the region of O<k<%.
to account for three-particle collisions competing against bi- - No soliton bistability occurs in the same guiding channel
nary collisions with the negative scattering lendtlhich  \ith the usual Kerr(cubic-only nonlinearity. In fact, in this
corresponds to the attractive interactipfis4]. However, in  case the soliton solutions are in one-to-one correspondence
this case the nonlinear-loss term, which takes into regard @ith modal eigenfunctions of the corresponding linear chan-
possibility that the triple collisions kick out atoms from the pg| waveguide and may be classified according to the num-
BEC into an incoherent component of the gas, must also bger of zeros in the solutiofso that a given number of zeros
taken into regard, and, as the BEC evolves in time rathefefines a single solitorf 18].
than in z, an accumulating effect of the nonlinear loss is  An important issue is stability of the soliton solutions. In
expected to be more damagifith]. . _ the free-space models, it frequently happens that one of the

The NLS equation(1) with the CQ nonlinearity can be two coexisting soliton branches is stable, while the other one
cast, after imposing appropriate normalization, in the follow-is not. This is suggested by the known Vakhitov-Kolokolov

ing form: (VK) criterion, which, for those models where its validity
v Av can be proven, gives a necessary stability condition for a
. J 2 4 solution branch characterized by the dependepde [19]:
—+—+ + - =0. " ; ;
! gz ax? WOOW + 2P [ = [ =0 ©® dQ/dk>0. Coexisting branches feature opposite signs of

this derivative(see below. Nevertheless, systematic stability
Indeed, the ratio between the nonlinear coefficients, as set irests based on direct simulations have demonstratetdiiat
Eq. (3), is achieved through a rescaling on the wave fieldsoliton branches in the CQ-nonlinear channel waveguide are
and the coefficients in front of the terms with the derivativesstable i.e., the VK criterion does not apply to that model.
are normalized through a rescaling nfand x, while the  Such a bistability is, obviously, promising for applications to
expression for the effective potentiélias the modulated all-optical switching. Curiously, in this model the VK crite-
part of the refractive index W(x), which is proportional to  rion fails in a wayoppositeto how this is known to occur in
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other cases, when some solitons, which are predicted by theentative. With the transition to a strong KP potential, the
criterion to be stable, turn out to be unstatdgainst pertur-  bistability disappears. .
bation modes corresponding to complex eigenvalues, for Another distinctive feature of the CQ model with the pe-
which the VK criterion is irrelevant An example of that is  riodic substrate is the band structure of the soliton solutions.
provided by the family of gap solitons in the standard modelWe will demonstrate that, as well as in the model combining
of a fiber Bragg grating20]. the self-focusing Kerr nonlinearity and a periodic potential,
The objective of this work is to find various species of the solitons tend to belong to a semi-infinite gap under the
solitons in the CQ model combined with a periodic array ofPottom of the Bloch band structure corresponding to the
waveguides, corresponding to a periodic functigyix) in given periodic potential in the Imgar model, while finite gaps
Egs.(1) and(4). In order to introduce a model that is closer between the Bloch bands remain empigvertheless, soli-

. . . tons are also found in the finite gaps, if the KP potential is
to optlca_ll multichannel syst_ems, we assume the rnOdUIat'oétrong enough However, in contrast to the situation in the
of No(X) n the form of perlod|c(W|th a periodL) array of Kerr model, the fundamental-soliton bandfiisite itself, be-
waveguiding cores of the widtD, separated by buffer layers ing localized near the top of the semi-infinite gap.

of the width L-D [cf. the expressior(7) for the channel Another step ahead made in this paper in comparison with
waveguidg, the study of solitons in the single-channel CQ model consid-
_ ered in Ref[16] is that the solitons’ stability was investi-
W(X) = {O’ D+ln<x<L(+m-D ., n=0,1,2,--. gated there only in direct simulations. In this work, we ex-
U, Ln<x<D+Ln plore the stability by means of both computation of the

(8) corresponding eigenvalues from the linearized version of Eq.
(1), and in direct simulations. As a result, we conclude that

Note that the linear Schrodinger equation with the periodicall the solitons(at least, with up to five humpsare stable.
potential in the form ofJ(x) =—W(x), whereW(x) is taken in  Importantly, in all the cases, the coexisting branches of the
the form of Eq.(8), constitutes the well-known Kronig- soliton solutions (two or, sometimes, foyy with both
Penney(KP) model, which admits calculation of the corre- dQ/dk>0 anddQ/dk<0, are found to be completely stable;
sponding band structure in an analytical fofgi] (solitons ~ Note that the branch of the latter kind are statbetrary to
in a model combining the KP potential and the usual cubidhe prediction of the VK criterion.

nonlinearity were very recently considered in Rg2]). The paper is organized as foII_ows. In Sec. I, we present
Once the underlying CQ NLS equation was fixed in theresults for the fundamenté&BH) solitons, including their sta-

form of Eq. (1), the parameter),D, andL of the KP po- bility and location in thek space relative to the band struc-

tential (8) are irreducible. To them, the integral powe %50 8 B BEETC AL O8N S i e

IriT(]aiSt be added as an intrinsic parameter of the soliton fam'f)and. For the same case, results for the double-humped soli-
o . . . . tons, of both SDH and ASDH types, are summarized in Sec.
In this wqu, we find several SPecies of .stable solitons M1, and, for the TH solitons together with some higher-order

the CQ-nonlinear KP model. First of all, in the case of agnes in Section IV. In Sec. V, we briefly consider the case of

relatively weak KP potential, we find, together with two co- 5 strong potential, when the bistability does not take place,

existing stable branches of the fundamenté@H) solitons — and stable fundamental and double-humped solitarfsch

(similar to those found in Refl16] in the single-channel are very different from those existing in the semi-infinite gap

mode), various types of stable higher-order solitons, includ-in the case of the weak potentiare found in finite gaps of

ing symmetric and antisymmetric double-hum@&®DH and  the KP band structure. The paper is concluded by Sec. VI.

ASDH) ones, two kinds of three-humpé&@iH) solitons, with

the phase difference zero arbetween the central and side II. SINGLE-HUMPED SOLITONS

peaks, and so on. Similar to the SH solutions, each family of |n Ref.[16], the CQ solitons trapped in the channel wave-

the multi-humped solitons features the bistability. A principal guide(7) were found both in a numerical form and by means

difference from the CQ single-channel model in which theof the variational approximation. In this paper, we focus on

integral powerQ of the SH soliton takes all the values from the numerical investigation, as the KP potenti@ makes

0 to« is that, in the KP model, the SH soliton exists up to avariational expressions rather ponderous. As concerns ana-

finite maximum Va|ueQ§:x>, above which only multihumped Iytical_considerations, an exact result can t_)e derived by in-
solitons can be foundan attempt to increas® by a small  tegration of Eq.(4) inside each segment with/(x)=const
increment above the maximum value leads to appearance 81d by matching the solutions at junctions between the seg-
a persistent breather instead of the stationary solitarfact, ~ Ments, in essentially the same way as it was done for the
the CQ-nonlinear KP model featuresbaam-splittingprop- ~ Single-channel CQ model in Ref16]. Assuming solitons
erty, which may be of obvious interest to applications: soli-with a single maximum, it is possible to demonstrate that the

tons of any type, with a given number of the peaks, aresRoliton’s amplitudeRmaX [the maximum value of the field
stable, but they exist in a finite range @f the increase of (x)] belongs to the interval

the integral power results in consecutive appearance of addi- \E -\3-4k-U) < ZRanaJ\“"g < \5 +V3-4(k-U)

tional peaks, which correspond to subpulses trapped in local 9
channels of the periodic structure. Quite plausibly, the latter

feature is common to a general class of models wiktu-  (under certain conditions, this inequality applies to multi-
rable nonlinearity of which the CQ one is a simplest repre- peaked solutions t9goAn obvious consequence of this in-
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0.4 05 06 07 08 09 1 1 12 13 FIG. 2. An example of the single-humped breather, obtained
from the single-humpe(BH) soliton corresponding to the end point
of the SH branch in Fig. 1, by stretching it with the factor & +
=1.1. Shown is the peak power of the resulting solutiphi(x
d=0)|2 vs z. Note a very small amplitude of the irregular oscillations
around a mean value of the peak power.

FIG. 1. (Color online The integral powe(2), Q, for the solitons
of diverse types vs the propagation constarin the CQ nonlinear
model with the periodic Kronig-Penney potential. The depth an
width of the potential wells are)=0.7 andD =3, and the thickness

of the buffer layer between the wells is-D=3. The labels SH, \\hich can be understood as follows. In the model with the
SDH, and ASDH pertain, respectively, to the single-humped, SYMETQ nonlinearity, the amplitude of the solitons is limited due
metric double-humped, and antisymmetric double-humped sollton?O the presence of the self-defocusing term, which is obvious
Furthermore, the labels PPPTH and NPNTH mark the families %rom the exact solution for the free-space éoli(ém Where
three-humped solitons of tié ++) and(~+ ) (in the gap between B(x)=<13/2. Therefore, the increase of the soliton’s integral

code could not converge to a solutjorEach curve ends at the power (norm) can only go via the increase of its width; in

maximum value of beyond which the corresponding soliton fam- Particular, the width of the exact solitos) diverges
ily does not exist, see the text. ~In[1/(ky,—k)] as one approaches the threshold vatye

:f [this is also obvious from the expressi(8) for the soli-
ton’s norm. The indefinite increase of the soliton’s width is
possible, indeed, in the free space, as well as in the case
Koy < U + :31 (10) when the soliton is p_inned in one chanﬁ_ladi]._ However, the _
expansion of the soliton on top of a periodic substrate inevi-
[in the case ofJ=0, it goes over into the conditidk< 2 for ~ tably leads to formation of new peaksumps, as will be
the exact free-space solit¢8)]. It is relevant to note that, in shown in detail below. On the other hand, in the model with
the case of the Kerfcubic-only nonlinearity, one obtains a the cubic-only nonlinearity, very larg® implies that the
less restrictive and less definite inequality instead of(@y. ~ soliton’s amplitude is very large>-Q, and its width is very
k<U+[Rpna(K)1? [18]. In fact, the latter result implies that small, ~1/Q, thergfor_e, an SH_so_Iiton with an indefinitely
the values ok available to the fundamental solitons in the large norm can exist in the periodic potenfial. _
Kerr model are not limitedsee also Ref[22]), while Eq. We also tried to check V\_/hat happens in direct s!mulanons
(10) shows that in the CQ modek is definitely bounded (rather than when searching for stationary solutjoas a
from above. This fact will have important consequences contesult of an attempt to create an SH soliton with the integral

equality is an upper limit on the propagation constant,

cerning the soliton bands in the modske below. power exceedingg(nf:x). To this end, the soliton correfpond-
As well as in the case of the one-channel model, the nuing to Q:Qf;z was stretched, replacinR(x) by R(x)
merical solution of the stationary equatiof) with the KP =R[(1+¢)x] with £>0, and the thus-stretched pulse was

substrate yields a single fundament&H) solution for a  then used as the initial configuration for direct simulations of
givenk, if k is smaller than a certain threshold vakig; in  Eq. (3). With ¢ relatively small (for instances=0.1), the
the region ok, <k<knay there are two coexisting SH soli- simulations generate a nearly stationary soliton with very
tons and no solution is found fée> k. [see also Eq10)].  weak(small-amplitudg and irregular, but persistent, intrinsic
In Fig. 1, this situation is illustrated by a generic example ofyibrations (a single-humped breathgrsee an example in
the curveQ(K) (the figure includes similar characteristics for Fig. 2. For largers (for example,e=0.25, the result is dif-
higher-order solitons, see details bejow ferent: in accordance with the explanation given above, new
We stress that, at values @ larger thanQEf;zx& at  side peaks are formed in the wings of the soliton, pulling into
which the fundamental-soliton curve ends in Fig. 1, SH soli-themselves a bigger part of the total power; then, a large
tons do not existor, at least, the numerical algorithm could share of the power returns to the central peak, and the power-
not converge to such a solitprThe nonexistence of the SH exchange cycle repeats itself quasiperiodically, as shown in
solitons at largeQ is a specific feature of the present model, Fig. 3. We stress that, although the side peaks may be small
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FIG. 3. Contour plots show a three-humped breather obtained
from the SH soliton corresponding to the end point of the SH
branch in Fig. 1, by stretching it with the factor £#1.25.

FIG. 5. (Color online A typical example of stable evolution of
the fundamentalsingle-humpep soliton (its unperturbed form is
the upper one in Fig.)4with an initial perturbation whose ampli-

I . tude is 3% of the soliton’s amplitude.
at some stage of the oscillations, they never disappear; ° P

hence, this object may be calledtaee-humped breathem  corroborated by a detailed consideration of the solitons’
both cases shown in Figs. 2 and 3, examination of the nushapes.
merical data demonstrates that the breather does not suffer Stability of the SH solitons was checked by means of the
any tangible radiation loss. numerical computation of eigen-values of small perturba-
Typical examples of the fundamental solitons in the bistations, linearizing Eq(1) around the stationary soliton solu-
bility range, where Fig. 1 predicts two SH solitons with dif- tions. The result is simple: all the fundamental solitons are
ferent amplitude and width for the sarkeare displayed in stable. The spectrum of the eigenfrequencies contains one
Fig. 4. We note that because the soliton’s field decays, atero value, all the other ones being réah example of the
|X| — <, as exg—k|x|), and the maximum value df attain-  spectrum will be displayed below for the case of SDH soli-
able by the soliton trapped in the potential structure is esserions, see Fig. @ The stability was also checked directly, in
tially larger thanky, =2 in the free space, the trapped soliton Simulations of a soliton that was randomly perturbed at the
may have sharper edges than the free one, which is a cle#jtial point, z=0. An example that illustrates the stability of
advantage for the multichannel systems employing spatiall the fundamental solitons is displayed in Fig. 5.
solitons. The fact that the trapped CQ solitons have sharper It seems plausible that an input beam whose profile is far

edges than their counterparts in the free space is, indeeflom the exact soliton will self-trap not into a static soliton,
but rather into a breather, similar to what is shown in Figs. 2

18 ' ' ' ' ' ' ' ' ' and 3 and was shown in detail in Rgi6] for the CQ model
with the single-channel potentiéf). More detailed consid-
eration of this issue is beyond the scope of this work.

It is obvious from Fig. 1 that the upper branch of the
R SH-soliton familydoes notsatisfy the VK stability criterion,
dQ/dk>0 [19]. Nevertheless, both the stability eigenvalues
and direct simulations clearly demonstrate that the entire up-
per branch is stabléas well as its lower counterpartin
particular, the stable soliton displayed in Fig. 5 belongs to
the upper branch. Thus, the VK criterion fails in the case of
W) the model combining the CQ nonlinearity and the potential.
(The same was already concluded, for the case of the single-
channel potential, in Ref.16]; however, in that work the
stability was not verified by computation of the eigenvalpes.

. , , , , . , , , , On the other hand, the validity of the criterion for this type of
. 8 & 4 -2 0 2 4 6 8 1w system has never been proven, to the best of our knowledge.
In any case, this result demonstrates validity limits of the VK

FIG. 4. (Color onling Two typical examples of the fundamental Criterion. _ . _ _ ) )
soliton, for the same parameters as in Fig. 1. Both solitons pertain An important issue is to identify the location of the soli-
to the propagation constakt=1 (the soliton with the larger and tons, in thek space, relative to the underlying band structure
smaller amplitude pertains, respectively, to the upper and lowepf the linear KP model. The corresponding quasiperiodic
branch in Fig. 1 The underlying Kronig-Penney potentiahx) is ~ Bloch modes have the usual fornR(x)=expigx)P(x),
shown in the lower part of the figure. whereq is a real quasimomentuin terms of quantum me-

0.5
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i §g§§§g* productDk, it is easy to demonstrate that the bands are ex-
? ponentially narrow, with the width

06

Akpang~ exp(— DVK). (12)

At typical values of parameters for a relatively weak KP
potential,U=0.7 andD=L-D=3, to which Figs. 1 and 4
04 T Bochoand pertain, the linear KP model gives rise to a single finite
Bloch band, 0.3195 k< 0.4356[see Fig. 63)]. All the soli-
03 ton families(SH and higher-order onggresented in Fig. 1
are located in the semi-infinite gap precisely beneath this
w4 band (i.e., at k>0.4356, while the finite gap, &k
<0.3195, which separates the finite and semi-infinite bands,
remains empty.
It is relevant to mention that, in the model with a periodic
. . . . . , . , (in particular, sinusoidalpotential and self-attracting Kerr
o 018 02 008 0% 04 0% 08 nonlinearity [1-3,23,24, the solitons completely fill the
semi-infinite gap; if the sinusoidal potential is strong enough,

o x then soliton solutions are found inside finite gaps ttwe
55l 3 same is possible in the present model if the KP potential is
sk e ® stronger, see Sec.)VThe situation is opposite in the model

combining the sinusoidal potential and self-defocugiagfi-

i Kerr) cubic nonlinearity. In that case, the semi-infinite gap is
4 : (quite naturally empty, while stable envelope solitofwith
35l a negative effective ma$&4]) are found in the finite gaps, as
4l x i shown in Ref[23]. (Very recently, such gap solitons have

= x been created in the BEC loaded in an OL poterjt4i].)

i ¥ A difference of the CQ model from the cubic one, which

is obvious from Fig. Tand also from the inequalit{10)], is

that the solitons fill a finite top part of the semi-infinite band,
X Bloch band while the rest of it remains empty. Thus, in the CQ model,

the situation is, in a certain sense, intermediate between
‘ . those in the Kerr and anti-Kerr models. In the case of a

15 2 25 3 relatively weak potential, the soliton band lies beneath the

Propagaion constart;k bottom of the linear-KP band structure, but it has a finite
width because of the saturable character of the nonlinearity
in the CQ model.

05

potential well depth, U

0.1

propagation constant, k

potential well depth, U

FIG. 6. Typical examples of the Bloch-band structure in the.
Kronig-Penney model with a wedghk) and strongb) potential. The
parameters ar&d=0.7 andD=L-D=3 in (@) andU=6 andD=L

—-D=6 in (b). The entire region ok<0 is a semi-infinite band. IIl. DOUBLE-HUMPED SOLITONS

Two families of double-humped solitons are easily found
chanic3, andP(x) is a periodic function with the period.  in the present model, corresponding to even and odd solu-
As is known[21], the band structure of the KP potenti8), tions R(x) of Eq. (4), i.e., SDH and ASDH solitons, respec-
k=k(q), is determined by a relation tively. The corresponding solution families are described by

the curvesQ(k) shown in Fig. 1. As well as their Skfun-
damental counterparts, each family of the double-humped
sml{(L D)\r sm(D\/:) solitons also features the bistability, in the sense of having
2\/_k two different solutions corresponding to the sakifeom the
respective intervalky,, <k<k,.. Moreover, the family of
+cosh (L - D) \"HCOS(D\/EK) =cogLg), (11)  the SDH solitons demonstrates the coexistencéoof dif-

B ferent solutions, in a narrow interval &fclose tokg,y (SO
wherek=U-k. Equation(11) gives rise to a semi-infinite that it hasthreeturning points, rather than one, in particular,
band of Bloch states d&<0, and several finite bands &t atD=L-D=3.4,U=0.7 for SDH solitons In fact, this fea-
>0. The bands are separated by gaps, in which solitons mdyre can be more pronounced at other values of the param-
(or may noj be found in a nonlinear model. Beneath the eters. As well as th@(k) characteristic for the SH solitons,
lowest finite band, a semi-infinite gap, extendingte +o,  the ones for the double-humped soliton, shown in Fig. 1,
is located(in particular, the entire region &> U belongs to  cannot be continued past the points at which they &nd,
the semi-infinite bar)d Typical examples of the band struc- =Q2Y Q=Q”P" andQ=Q!™.
ture in the linear KP model, with a weak and strong potential, Typical examples of SDH and ASDH soliton pairs, per-
are displayed in Fig. 6. In particular, for large values of thetaining to a common value &, are presented in Fig. 7. It is
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FIG. 8. Characteristics for the families of the single-humped
(SH), symmetric double-humpeg@&DH), and antisymmetric double-
T humped(ASDH) solitons, in the form of the half-widthv vs the
Ak propagation constaritin the model withU=1 andD=L-D=2.

(b)

05
definition of the half-width, as it must apply to solitons with
quite different shapes:

SO —
. \ ‘ w=Q1 f i R2(x)xdx. (13

ab Typical examples of thewv(k) characteristics for both the
symmetric and antisymmetric double-humped solitons are
displayed in Fig. 8. For comparison, tksk) characteristic
for the fundamental SH soliton is also shown in the figure.
X As it was explained above, the soliton’s amplitude in the CQ
model is bounded from above; for this reason, the double-
FIG. 7. (Color onling Generic examples of the symmet@  hymped soliton is about three times as broad as its SH coun-
and antisymmetriob) double-humped solitons belonging to the terpart. In addition, the SDH soliton is somewhat narrower
families presented in Fig. 1. In each panel, a pair of solitons founqhan its ASDH counterpart, as the former soliton is a “denser
at the same value of the propagation consteat], are displayed. packed” one.
Double-humped solitons do not exist in the CQ model
noteworthy that th&)(k) curve for the SDH solitons ends at with the single-channel potential7) [16], but they are
QSP¥'~19.3, which is, approximately, twice the above- known in the model with the Kertself-focusing cubitnon-

max

mentioned end-point valueQS"~9, of the SH-soliton linearity and sinusoidal potentia[1-3]. However, the
branch(pertaining to the same values of the parameters oflouble-humped solitons in the present model play a princi-

the KP potential For the ASDH family, the endpoint value pally different role. As it was said above, in the case of the

is Q(n?;DH)zl&T Together with the shapes of the SDH angcubic nonlinearity the SH solitons exist at all the values of

ASDH solitons displayed in Fig. 7, these observationsthe integral power, up t@=x. In the CQ model, they exist
strongly suggest that the double-humped solitons may b@nly in the region ofQ< Q'Y as was shown above. Thus,
considered as bound states of two SH solitons, with thavhile in the cubic model the single- and double-humped soli-
phase shift between them 0 et respectively. This interpre- tons existin parallel, thbeam splittingakes place in the CQ
tation is strongly supported by an observation that, if themodel. In the intervaQ{> <Q<Q\>>", only the double-
Q(k) curves in Fig. 1 are redrawn so that the curve for soli-humped solitons are possiblgn the subinteranf;kQ
tons with N peaks is replaced b@(k)/N (power per peak, <Q“SPH poth SDH and ASDH solitons are found, while in

max
which actually affects the cases df=2 and 3, then the the smaller regionQ">"" <Q<Q>°", only the former
bottom parts of the curve®(k)/N (those up to the turning type is present. For instance, in the cases shown in Fig. 1,
point) are practically identical for all the families. these two intervals are, approximately<®<18.7 and
It may also be useful to look at the soliton families in 18.7<Q<19.3] Of course, higher-order solitons, with more
terms of the dependence betweerand the soliton’s half- than two peaks, also exist in the same region and beyond. On

width w (instead ofQ). To this end, we adopt the integral the other hand, extensive numerical exploration of the pa-

-15 L o
-15 -10 -5

o
o
=L
o
-
o
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FIG. 9. The set of eigenfrequencies for small perturbations
around the antisymmetric double-humped soliton, which is the
taller one from Fig. 7a).

rameter space has not turned up any example of asymmetri
double-humped solitons, i.e., ones that would be neithef™
symmetric nor antisymmetric.

The stability of the double-humped solitons was studied,
as well as in the case of the SH solitons, through the com-
putation of the eigenfrequencies of small perturbations anc
in direct simulations. Both methods have shown that the
families of the SDH and ASDH solitons are completely
stable in their entire existence regions. It is noteworthy that,
in the narrow region wheréur different SDH solitons co-
exist (see Fig. 1, theyall are stable. ) .

Atypical example of the full spectrum of the perturbation ~ FIG- 10. (Color onling Stable relaxation of the symmetrie)
eigenfrequencies for an ASDH soliton is displayed in Fig. 9,2nd antisymmetri¢b) double-humped solitongthe same as those
and Fig. 10 shows relaxation of perturbed double-humpeahown in Flg.'7WIth an initial perturbation whose amplitude is 5%
solitons. Note that, as well as the SH soliton family, theOf the soliton’s amplitude.
double-humped solitondo not obey the VK criterion be-
cause the branches wittiQ/dk<<0Q are as stable as their
counterparts witldQ/dk>0.

A very strong perturbation applied to a double-humped
soliton can result in transition to a soliton of a different type.
For example, Fig. 11 shows a strong perturbation switching
the double-humped soliton into one with four peaks, which
also demonstrates the existence of a plethora of higher-orde
solitons in the mode{see also Sec. IV

As it was mentioned above, the integral power of the
double-humped solitons is bounded from above. An attempivwae

to push the power of the SDH soliton above the maximum os 1\

value results in a further step in theam splittingcascade, 04+ MM\/ /

generating extra side peaks, so that the soliton assumes °‘2" TIOIY

breathing(nonstationary four-humped shape, similar to that iy “q;’ |
WA

A
4 ”l[."?. s\\\.

RN M

LR
LY NN
NGl ’»k‘»"\\

obtained in Fig. 14cf. the three-humped breather in Fig. 3
Actually, in the case displayed in Fig. 11 it is observed that
the attempt to make the two in-phase peaks in the SDH soli- z
ton too high inducesepulsion between them because the
self-defocusing quintic terms dominate for large values of F|G. 11. (Color onling An initial perturbation whose amplitude
the amplitude; as a result, a part of the power is shed off intgs 20% of the soliton’s amplitude switches the symmetric double-
the adjacent cells, giving rise to the extra peaks. humped solitorithe same as that shown, in the unperturbed form, in

On the other hand, an attempt to pump too much poweFig. 7(a)] into a higher-order nonstationafiyreathing four-numped
into the ASDH soliton leads to a different outcome: as thesoliton.
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FIG. 12. (Color onling A three-humped stable soliton, found at
k=1, in the model withJ=1, D=3 and the thickness of the buffer
layer L-D=1. For comparison, the dashed curve shows a single
humped soliton, found also fd=1, in the single-channel counter-
part of the Kronig-Penney model.

two humps with the phase shift af repel each other, one of
the “overpumped” humps makes a jump to an adjacent ce
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FIG. 13.(Color onlinge Two three-humped stable solitons, found
for k=1, in the model withU=0.7 andD=L-D=3.
V. SOLITONS IN FINITE GAPS IN THE MODEL WITH A
STRONG POTENTIAL

While in the case of the weak potential all the solitons
gxist solely in the semi-infinite band, in the case of a stronger

of the KP structure; thus, there appears an antisymmetripotential, with deeper and/or broader potential wells between

soliton with two humps separated by a nearly empty @eit
shown herg In fact, entire families of such double-humped

the guiding cores, when the KP band structure contains many
narrow Bloch band$see Fig. €b)], the solitons are found

solitons with an empty cell between the peaks can be easil§lso in finite gaps between the bands. Typical examples of

constructed.

IV. THREE-HUMPED AND HIGHER-ORDER SOLITONS

Stationary counterparts of three-humped breathers, sué
as the one presented in Fig. 3, can be found too, and they a

form families. An example of a three-hump€BH) soliton
structure with thg—-+-) signature of the peaks is shown in

Fig. 12. This example stresses that the formation of the TH

soliton is specific to the model with the periodic potential,

while the CQ model with the single-channel potential sup-

ports only SH solitons, with arbitrarily larg®. Examples of
the three-humped solitons of tlie + +) type are shown in

Fig. 13. These examples stress that the three-humped fami

shares the bistability property with the lower-order solitons.

The dependenced3(k) for the three-humped soliton fami-
lies are included in Fig. 1. The large gap in the curve for th
branch of the(++ +) type means that, in the corresponding
interval of the values of), the numerical procedure could
not generate any solution of this type; whether the solution
really do not exist in the gap or merely could not be found
remains unclear.

It is instructive to compare the maximum value of the
integral power in the latter branc@,ﬁﬁfxpmxﬂ, to the limit
valuesQ'>" and Q'°> for the single-humped and symmet-
ric double-humped solitons in the same figFég. 1). Ob-

viously, QF"P™ is very close to®" and, simultaneously,

to (3/2)QY which confirms that the TH soliton of the

max ’
(+++) type is a bound state of three fundamental ones.

e

the corresponding fundamental and double solitéinsth

symmetric and antisymmetric oneare displayed in Fig. 14.

A drastic difference from the solitons that were found, for a

weaker potential, in the semi-infinite gégf. Figs. 4 and ¥

§ the “flat-top” shape of the solitons in the finite gdhsw-

ver, they are not absolutely flat inside the waveguiding

cores, as it is easy to prove that soliton solutions cannot

include constant parts

An example of theQ(k) characteristic for the full family

of the fundamental solitons found in the deep KP potential is

shown in Fig. 15(cf. Fig. 1 for the solitons found in the

shallow KP potential, when all solitons belong to the semi-

infinite gap. For values of the parameters corresponding to
e case shown in Fig. 15, there are five finite Bloch bands

Wn addition to the semi-infinite oné<0), see Table |. Note

that the bands become extremely narrow, obeying the ana-

lytical estimate(12).

As is seen in Fig. 15, the gap<0k<<1.002 96, which

separates the semi-infinite barfkl<<0) and the first finite

one, remains empty, while the fundamental-soliton solutions

Till the gap between the first and second finite bands. The

curve representing the soliton family is cut by the four nar-
row Bloch bands, and then continues into the semi-infinite
gap, where it ends. Families of the symmetric and antisym-
metric double solitons have approximately the same struc-
ture.

Note that Fig. 15 features no bistability. In fact, detailed
examination of the evolution of th®(k) curves with the
increase of the deptl of the KP potential8) shows that the
lower end of the bistable curvdsee Fig. 1 moves to the
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FIG. 15. The curve(k) for the family of the fundamental flat-
top solitons extending across the finite gaps into the semi-infinite
one forU=6 andD=L-D=6. Crosses show where the curve is cut
by very narrow Bloch bands. The exact locations and widths of the
bands are given in Table I.

right, approaching the turning point, and, at some critical
value ofU, the turning point disappearéience, the bista-
bility disappears to9.

Direct simulations demonstrate that all the solitons we
have found in the finite gaps astable An example of stable
relaxation of a perturbed fundamental soliton is shown in
Fig. 16. Note that th&€(k) curve of the fundamental soliton
family in Fig. 15 has a negative slope and thus contravenes
the VK criterion (recall the criterion demandsQ/dk>0),
but the family is, nevertheless, completely stable.

VI. CONCLUSION

We have presented a model combining the Kronig-Penney
(KP) potential, in the form of a periodic array of rectangular
potential wells, and the cubic-quint{€Q) nonlinearity. The
system supports a plethora of soliton states, including funda-
mental single-humped solitons, symmetric and antisymmet-
ric double-humped ones, three-peak solitons with and with-
out the phase shiftr between the peaks, etc.

TABLE I. Finite Bloch bands in the Kronig-Penney potentigl
with U=6 andD=L-D=6, the same case as shown in Fig. 15.
Each band is found in the corresponding interkah <k <Kign,
with the width Ak=Kkgn—ker. The analytical estimate for the
width, (AK)eg IS given by Eq.(12).

kleft kright Ak (Ak)est

1.00296 1.00704 5103 2.5x10°3

FIG. 14. (Color onling Typical examples of the fundamental 2.70203 2.70213 1d 0.5x10*
(@), double-symmetrigb), and double-antisymmetritc) solitons  4.116149 4.116156 %1076 5x10°

with the flat-top shape, found in a finite gap of a deep Kronig-5.1554377 5.1554386 091076 1.2x10°®
Penney potential, with) =6, D=L-D=6, andk=2. All these soli- 57878931 57878932 10 5% 107

tons are stable.
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Both the computation of stability eigenvalues and direct
simulations of perturbed solitons show that they all are
stable. As well as in the recently studied CQ model with the
single-channel potential, and on the contrary to the model
with the Kerr nonlinearity, the soliton families feature bista-
bility, in the form of two (sometimes, even foudifferent
states found for a given propagation constientvith differ-
ent values of the integral pow&). However, the bistability
disappears in the case of a very deep potential. It is notewor-
thy that the solution branches with bothQ/dk>0 and
dQ/dk<0 are stable disobeying the Vakhitov-Kolokolov
criterion,

Another distinctive feature of the model is thmam-
splitting property: increase of results in a consecutive in-
crease of the number of peaks in the soliton’s shape, each

FIG. 16. Stable evolution of a perturbed fundamental solitoncorresponding to a subbeam trapped in an individual channel
belonging to a finite gap whose unperturbed shape is shown in Figdf the periodic structure. This property is explained by an
14(a). upper bound on the soliton’'s amplitude in the CQ model,

which allows one to increase the beam’s power only through

If the potential is weak, then all the solitons fall into the its broadening. The broadening leads to the formation of ad-
semi-infinite gap beneath the linear band structure of the KRlitional peaks in the soliton through trapping of new sub-
potential, while finite gaps between the Bloch bands remaifbeams in adjacent troughs of the potential structure. The
empty. However, in contrast with what was found in thebeam splitting and strong stability of the resultant multipeak
model combining a weak periodic potential and the self-solitons are effects of direct interest to applications. It is
focusing Kerr nonlinearity, in the CQ model only a finite plausible that characteristic features demonstrated by the
zone near the top of the semi-infinite gap is filled by thepresent model will be shared by more general ones combin-
solitons, which is a consequence of the saturable character ofg a saturable nonlinearity and a periodic potential sub-
the nonlinearity. In the case when the KP potential is deepestrate.
and/or the buffer layers between the guiding cores are
broader, fundamgntal anq dout(leymmet'ric. and antisym- ACKNOWLEDGMENT
metric) stable solitons, with a characteristic flat-top shape,
are found in finite gaps that separate the Bloch bands in the This work was supported, in a part, by the Israel Science
linear KP model. Foundation through the Grant No. 8006/03.
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